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Abstract
This report presents an analysis of Visual Perceptual Learning (VPL) through the lens of

advanced Deep Neural Network (DNN) models, specifically focusing on enhancements made to
existing models to achieve a more accurate representation of VPL. By incorporating

anatomical skip connections and integrating a Recurrent Neural Network (RNN) for dynamic
processing and reaction time measurement, alongside the exploration of unsupervised loss
functions, this study aims to bridge the gap between computational modeling and biological
plausibility in VPL. Our findings demonstrate the models' ability to learn and differentiate
between various task precisions, showing behaviors akin to those observed in human and

primate VPL tasks, thus offering new insights into the mechanisms of perceptual learning and
its applications in artificial intelligence and vision rehabilitation.

1. Introduction
Visual Perceptual Learning, the process of improving perceptual skills through practice, is a

fundamental aspect of sensory psychology and neuroscience, revealing how experiences shape our
sensory modalities. VPL, in particular, highlights how exposure to visual stimuli enhances our ability to
discriminate between different features, such as orientation, contrast, and motion, contributing
significantly to our understanding of sensory processing and learning mechanisms. Despite
considerable advancements, the intricate dynamics of VPL continue to elude comprehensive
theoretical explanation, necessitating further exploration into the neural correlates and computational
models that can accurately replicate these learning processes.

Recent studies leveraging Deep Convolutional Neural Networks (DCNNs), modeled after the
hierarchical structure of the visual cortex, have shown promise in mirroring the complexities of human
perceptual learning. These models, capable of emulating the functional intricacies of early,
intermediate, and late visual areas, present a compelling framework for investigating VPL. However,
traditional approaches often fall short in aligning with physiological data, prompting the need for
refined models that consider the contributions of multiple visual areas and incorporate biologically
plausible learning mechanisms. This paper builds on the foundational work of Wenliang and Seitz [26],
extending the model to include skip connections and RNN components, aiming to enhance biological
plausibility and measure dynamic processes such as reaction time. By exploring these modifications
within the context of VPL, we aim to deepen our understanding of perceptual learning's underlying
mechanisms and its implications for artificial intelligence, machine learning, and vision rehabilitation.

2. Background

2.1 Visual Perceptual Learning

Perceptual learning, the improvement in perceptual tasks through practice, has been a subject
of interest for sensory psychologists since the early days of experimental psychology [1]. It occurs in all
sensory modalities, such as vision, audition, touch, smell, taste, and combinations of these [2]. This type
of learning can lead to significant performance enhancements and can persist for extended periods [3,4].

Visual perceptual learning (VPL) involves the enhancement of sensitivity to visual stimuli through
training or experience. This phenomenon has been demonstrated in the discrimination of simple features
such as orientation, contrast, and motion direction, as well as more complicated patterns [5, 6, 7, 8, 9].
Many studies on visual perceptual learning employ forced-choice tasks. In these tasks, such as the
two-interval two-alternative forced choice (2I-AFC) detection task, participants are first presented with a
reference stimulus, followed by a target stimulus. They are then required to determine if the target is
more clockwise or more counterclockwise compared with the reference. Typically, feedback is provided
to inform the participant whether their judgment was accurate. The evaluation of a participant's
performance, in terms of accuracy or reaction time, is usually conducted over a series of trials within a
block (which includes dozens of trials) or a session (comprising hundreds of trials). The results are
graphically represented through a learning curve that maps performance improvement over the number
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of blocks or sessions. As the training progresses, participants tend to show improvements in both speed
and accuracy, indicating that the task becomes less challenging. (fig. 1)

Figure 1. Standard paradigm of Visual Perceptual Learning

The hallmark of perceptual learning, particularly evident in laboratory settings, is its specificity:
the enhancement in performance achieved through training on a specific task and stimulus often does
not extend to similar tasks and stimuli [2]. Visual perceptual learning is specifically related to factors
such as the retinal location, the involved eye, and the stimulus or task being trained. However, this
specificity is not absolute; a degree of learning transfer to similar stimuli and tasks is often observed,
influenced by a variety of factors. The observation of specificity in behavioral outcomes could be
consistent with enhanced weighting or read-out processes in the initial cortical regions, rather than
directly indicating plastic changes within the early visual cortex [10]. The degree of specificity and its
transfer are measured by the specificity index (SI), which can vary significantly across different tasks].

2.2 Theories of perceptual learning
Perceptual learning in the visual domain is explained by two primary theories: representation

enhancement and information reweighting. Representation enhancement suggests that learning
modifies the responses or tuning of neurons in early visual areas, while information reweighting
involves adjusting the emphasis on relevant versus irrelevant inputs during perceptual
decision-making, without altering the underlying neural representations [7,11,12,13]. Although both
approaches improve signal-to-noise ratios, reweighting, which can occur at various stages in the visual
processing pathway, is considered the more prevalent mechanism in adapting to specific tasks [14,15].

Evidence largely supports the stability of visual representations in early cortical areas, with
significant plasticity observed in higher visual areas during active tasks, indicating a transient,
task-specific influence rather than permanent changes [16,17]. Neurofeedback and imaging studies
further suggest that while early cortical areas can be influenced by targeted interventions, perceptual
learning primarily engages higher-level areas through the reweighting of information [16,19,20].

The majority of computational models and empirical data support the reweighting theory,
highlighting its role in accounting for the observed dynamics of perceptual learning without
necessitating persistent changes in early sensory representations [11,21,22,23]. This suggests that
perceptual learning largely reflects a reevaluation of sensory information rather than a fundamental
alteration of sensory representations.

Most current models for Visual Perceptual Learning (VPL) use artificial neural networks and
are trained with Hebbian-like [22, 23,24] rules or optimal decoding methods [25]. However, they often
fall short in aligning with physiological data and considering how multiple visual areas contribute to
learning [26]. While some models like the Reverse Hierarchy Theory [13] (RHT) and the Dual Plasticity
Model [12] propose theoretical frameworks for VPL, they do not predict specific neuron tuning
changes. A recent study by Wenliang & Seitz [26] reveals that a Deep Neural Network serves as an
effective computational model for visual perceptual learning, accurately replicating essential behavioral
and physiological observations despite not being specifically designed for this purpose.
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2.3 Deep convolutional neural networks

Deep convolutional neural networks (DCNNs) are designed for tasks like image recognition,
learning from vast datasets of images and their labels to fine-tune the connections between layers,
achieving high accuracy in image classification. Although these networks are primarily tools in artificial
intelligence and not models of human behavior, they encounter similar challenges as those found in
the study of visual perceptual learning, including issues of specificity versus generalizability and
balancing plasticity with stability.

DCNNs, modelled after the visual cortex, are composed of hierarchically structured layers,
each receiving input from the one before it. They can be comprehensively trained to model intricate
input-output relationships and can achieve a human-like precision in categorizing natural images [29].
Upon training, DCNNs' feature detectors mirror the functional properties of the neurons across the
visual cortex, extracting simple features in initial layers and complex visual forms in deeper layers [30].
Furthermore, DCNNs have demonstrated significant similarities with human behaviors and neural data
from early, intermediate, and late visual areas (such as the inferior temporal cortex (IT)) [28]. This
makes DCNNs a natural choice for modeling and understanding VPL [22] in line with the RHT [31].
Although early studies have used simple neural network architectures and shallow networks [32] to
mimic varied perceptual training conditions, the capacity of DCNNs to accurately represent VPL's
physiological data is still a largely unexplored research avenue.

In the context of modeling perceptual learning, DCNNs and the integrated reweighting theory
present distinct approaches [26]. DCNNs learn representations and adjust connections from the
ground up, while the integrated reweighting theory starts from established properties of the visual
system, acknowledging that humans have some level of proficiency in visual tasks even prior to
training. After extensive training, the early layers of DCNNs show similarities to the processing in early
visual cortical areas [27,28]. However, DCNNs rely on supervised learning with labeled images,
whereas the integrated reweighting theory, mimicking natural learning processes, can operate without
explicit feedback and proves more resilient to slight changes in visual inputs.

2.4 Deep Learning Model of Perceptual Learning

The Reverse Hierarchy Theory (RHT) does not explicitly detail how training induces selective
neural plasticity based on task precision. However, a study by Wenliang and Seitz [26] demonstrated
that the principles of RHT could be observed in a deep neural network (DNN), specifically designed
and trained for this purpose. By retraining a DNN known as AlexNet, initially pretrained on image
classification tasks, on an orientation discrimination task, Wenliang and Seitz (2018) were able to
replicate key findings from VPL research (fig. 2A). This experiment aimed to show that a DNN could
not only exhibit the behavioral outcomes seen in VPL but also emulate the specific neurophysiological
changes observed in studies with nonhuman primates(fig. 2B and 2C). These changes were expected
to reflect a layer-specific plasticity within the network, influenced by the precision of the task at hand,
aligning with predictions made by the RHT.

The proposed DNN was engaged in an orientation discrimination task at various precision
levels (0.5–10° separation angle), assessing its learning outcomes not only with the trained stimuli but
also with untrained spatial frequencies and orientations. This approach mirrored human VPL
processes, where the network exhibited diminished sensitivity transfer to new stimuli with higher
precision training, akin to findings in prior research [8] (fig. 2D and 2E). Interestingly, the network
achieved peak accuracy more swiftly on tasks requiring less precision, highlighting a parallel with
human learning challenges in high-precision tasks.

The proposed model, along with earlier theories, suggested that VPL-related behavioral
improvements could be attributed to the retuning of sensory neurons [33], although VPL improvements
might not always stem from sensory neuron retuning. The DNN model, representing a scenario where
sensory information is ideally integrated and interpreted downstream from the visual cortex, proposes
that VPL enhances performance by adjusting sensory neurons' tuning to be more task-relevant. This
concept aligns with the model but might not fully apply to the human visual system. In cases where the
information readout from sensory neurons isn't optimal, VPL improvements primarily involve
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fine-tuning this readout process, reflecting a reweighting mechanism [23] rather than altering neuron
tuning.

Figure 2. A) A deep network model of perceptual learning. Clockwise-oriented or anticlockwise-oriented visual inputs
flow through layers of weights to an output layer that reports the direction of rotation. ht and hr denote the last hidden unit

for the target and reference images, respectively; p(CW) is the probability that the target image is clockwise with respect to
the reference[18]. B) Tuning curve slope changes due to learning measured in primate primary visual cortex (V1) [16].

C) Alterations in the slope of tuning curves resulting from the application of gradient descent learning in the model
depicted in part A. D) displays the trajectory of accuracy (top) and transfer index (bottom) across training iterations, with
darker blue signifying greater precision. E) Transfer of behavioral performance to varying orientations (Ori) and spatial

frequencies (SF) following training on tasks with different angular separations[26].

Adjusting the tuning of sensory neurons (representation model) and modifying how information
is weighted during the decision-making process (reweighting model) both contribute to the behavioral
outcomes observed in Visual Perceptual Learning (VPL), yet they operate through distinct processes.
The reweighting model, different from the structure of deep neural networks (DNNs), allows the
decision-making neuron to interact directly with neurons across all layers. In tasks requiring high
precision, this model emphasizes the importance of initial visual processing stages by assigning
greater significance to them, enhancing task specificity without altering the neurons' response
characteristics [11]. On the other hand, Wenliang and Seitz (2018) demonstrated that within DNNs'
layered hierarchy, learning is influenced by the specific adjustments in the early layers, even without
direct communication between these layers and the decision-making component, raising questions
about the primary drivers of VPL specificity.

Wenliang and Seitz [26] found that within the strict hierarchy of DNNs, which does not
naturally accommodate the reweighting approach, the observed enhancements largely stem from
modifications in the response patterns of neurons across different layers. Introducing "skip
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connections" that link all layers directly to the decision-making layer could integrate the reweighting
and representation theories, allowing for a more comprehensive analysis of their respective roles in
improving behavior. This concept of skip connections finds support in the anatomical structure of the
visual cortex, as noted in study by Felleman and Van Essen [34], suggesting a potential parallel in how
the brain might integrate these mechanisms.

To enhance the accuracy of the existing model initially proposed by Wenliang and Seitz [26],
we implemented several modifications. First, to better integrate the concept of anatomical skip
connections and align the model more closely with the reweighting approach, we incorporated skip
connections into the AlexNet architecture. Second, considering the significance of reaction times in
studies of visual perceptual learning, which the original model's static framework could not capture, we
introduced a recurrent neural network (RNN) as the decision-making component to reflect the dynamic
nature of task processing and decision-making within individual trials. Finally, whereas the original
model was trained entirely in a supervised manner, we also explored the impact of introducing
unsupervised feedback to the network, aiming to investigate its role further.

3. Material & Methods

3.1 Model Description
In our study, we utilized a deep neural network (DNN) based on the AlexNet architecture,

enhanced with skip connections and a recurrent neural network (RNN) component, to simulate visual
perceptual learning (VPL), following the approach outlined in [25]. For a detailed explanation of the
network architecture, we direct readers to [29]. Originally, AlexNet comprises eight layers, with the first
five layers featuring units that connect to small, retinotopically arranged patches in the preceding layer
or input image. This arrangement facilitates spatial replication of feature extraction across all locations
via weight sharing, a process known as convolution. The final three layers of AlexNet, fully connected,
originally map to object labels for classification tasks.

In our adaptation, to mirror early visual processing more accurately and streamline the model,
we retained only the convolutional layers of AlexNet, excluding the three fully connected layers. This
modification reflects findings suggesting the latter layers' high representational similarity to
inferotemporal (IT) cortex regions, thus aligning more with object classification tasks than with the
nuances of VPL, particularly for tasks like Gabor orientation discrimination [28, 35]. A fully connected
layer has been incorporated, establishing complete integration with all convolutional layers through
skip connections. This configuration forms a comprehensive feature representation of the stimulus
within the newly constituted sixth layer of our model. (fig 3. )

Figure 3. AlexNet with skip connections

Upon feature extraction using AlexNet equipped with skip connections, the resulting features
are inputted into a Recurrent Neural Network (RNN) module. RNNs, a subset of neural networks, are
distinguished by their ability to use previous inputs to maintain and update their hidden states. The
standard architecture of RNNs is depicted (fig. 4).
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Figure 4. Architecture of a traditional RNN [41]

For each time step t, activation a<t> and output the output y<t> are computed as follows:

(1)

(2)

In these expressions, x<t>, represents the input at time t, a<t> denotes the hidden state at time t,
encapsulating information from current and past inputs. The matrices Wax, Waa and Wya correspond to
the weights from input to hidden layer, hidden layer to itself, and hidden layer to output layer,
respectively, while ba and bo are bias terms. The function g typically represents a nonlinear activation
function, such as the hyperbolic tangent or sigmoid function[36].

For this research, we employed a specific variant of Recurrent Neural Networks known as the
Gated Recurrent Unit (GRU). The Gated Recurrent Unit (GRU) is a type of Recurrent Neural Network
(RNN) architecture designed to solve the vanishing gradient problem that traditional RNNs face,
enabling it to capture dependencies from long sequences of data more effectively. GRUs streamline
the architecture of RNNs through the use of two key mechanisms: the update gate and the reset gate.
The update gate helps the model decide how much of the past information to carry forward to the next
step, while the reset gate determines how much of this information to forget. This allows GRUs to
effectively manage information over long durations, making them particularly useful for tasks that
involve sequential data processing [37].

The six-layer network, augmented with an RNN module, was adapted to simulate
decision-making within the two-interval two-alternative forced choice (2I-2AFC) paradigm, as
illustrated in Figure 5. In this setup, a reference stimulus is presented for a brief period, followed by a
target stimulus. The model is tasked with determining if the target stimulus is rotated more clockwise
or counterclockwise relative to the reference. In our DNN framework, both the reference and target
stimuli undergo processing through the identical six-layer network. The DNN architecture processes
both stimuli using the same six-layer setup, ending in a scalar output from the RNN. A readout layer
positioned atop the RNN then displays the probability of the image being oriented clockwise.

7



Figure 5. Dynamic VPL Deep Neural Network

3.2 Task and stimuli

In the two experiments outlined below, the stimuli were composed of 5 reference images and
5 target images, all centered on 8-bit, 227 by 227-pixel frames with a gray background.

3.3 Experiments

Experiment 1:
The network underwent training to determine if a target Gabor stimulus was oriented

clockwise or counter-clockwise relative to a reference stimulus. The training parameters included a
reference Gabor orientation of 0° and a spatial frequency of 0.05 cycles per pixel. To mimic the brief
exposure to the stimulus and the presence of sensory noise, we maintained a low contrast level and
introduced isotropic Gaussian noise with a standard deviation of 0.001 to each image. The training
covered various angle separations between the reference and target stimuli, specifically at 0.5°, 1.0°,
2.0°, 5.0°, and 10.0°. To evaluate the network's ability to generalize and transfer learning to new tasks,
we tested the trained model using images with a different spatial frequency of 0.1.

At each time step, the network produces an output. The input includes 5 reference images and
5 target images, with Gaussian noise added to the latter. We utilized a binary cross-entropy loss
function to minimize the difference between the network’s predictions for the five target images and
their actual labels.

𝐵𝐶𝐸 =  − 1
𝑁

1

𝑁

∑(𝑦
𝑖
𝑙𝑜𝑔(𝑦

𝑖
) + (1− 𝑦

𝑖
)𝑙𝑜𝑔(1 − 𝑦

𝑖
))         (3)

● N is is the number of samples, ​
● is the actual label of the ith sample,𝑦

𝑖

● is the predicted probability that the ith sample belongs to the positive class.𝑦
𝑖

Experiment 2:
Experiment 2 closely mirrored the first experiment, with a key distinction. In training the

network, we implemented a compound loss function that combined classification error, derived from a
binary cross-entropy function, and prediction error, obtained from a mean squared error function. This
required modifying the network to include an additional readout layer on top of the recurrent neural
network, tasked with predicting the next image representation. We then calculated the mean distance
between the output of this layer and the actual embedded representation. Consequently, the loss
function was a weighted sum of both the classification and prediction errors.

𝑀𝑆𝐸 =  𝑚𝑒𝑎𝑛(𝑧
𝑡
 −  𝑧

𝑡
)2       (4)
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Compound Loss = Classification Loss + Prediction Loss (5)λ

● : Actual feature representation at time𝑧
𝑡

● : Predicted feature representation at time𝑧
𝑡

● : Prediction error weightλ

3.4 Training procedure
In both experiments, we initialized the network weights by importing them from an AlexNet

pre-trained on the ImageNet Dataset for the convolutional layers, while all other weights were set
randomly. We employed stochastic gradient descent (SGD) as the learning algorithm, adjusting the
weights to reduce the gap between the network's output and the given stimulus labels. The learning
rate was set to 0.001, and the momentum was set to 0.9, both of which remained constant throughout
the training process. The loss function, which was cross-entropy loss for the first experiment and
compound loss for the second, varied based on the network weights, the input images batch of 20
sequences, and their respective labels. The calculation of gradients for weight adjustment was
performed using backpropagation through the network layers [38].

3.5 Specificity Index (SI)
The Specificity Index (SI) is a measure used to quantify the degree to which learning or

improvement in one task transfers to other tasks or conditions. In the context of Visual Perceptual
Learning (VPL), the SI assesses how training on a specific visual task affects performance on similar
but untrained tasks. A high SI indicates that the learning is highly specific to the trained task, showing
little to no transfer to other tasks, which suggests that the skills or improvements gained are closely
tied to the particular stimuli or conditions of the training. Conversely, a lower SI suggests a broader
transfer of learning, indicating that the improvements are not strictly bound to the trained conditions
and can enhance performance on different but related tasks. The SI is essential for comprehending
the boundaries and capabilities of perceptual learning, offering insights into how learning transfers
across different sensory or cognitive areas and the generalizability of training effects. For this task we
compute the SI as follows:

(6)

3.6 Estimating learning in layers

Following the training period, the weights in each layer were consolidated into a singular
vector, and the extent of learning was quantified by the deviation from the values prior to training. For
a given layer that has N total connections to its preceding layer, let's denote the initial N-dimensional
weight vector, which was trained for object classification, as w (where N and w are as specified in
AlexNet). The alteration in this weight vector attributable to perceptual learning is represented as Δw.
Consequently, the change in the layer is determined as follows:

( 7)

where i indexes each element in the weight vector
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4. Results:
Following the described training methodology, we successfully trained the networks in the first

experiment across all separation angles. As anticipated, increasing the task's precision (by decreasing
the separation angle) made training the network more challenging, requiring additional epochs to
achieve 100 percent accuracy, as illustrated in Figure 5.A. The observed fluctuations in accuracy
highlight the model's uncertainty during training, caused by the strict threshold applied for calculating
accuracy.

In the second experiment, we were also able to train the network using a compound loss
across all separation angles, as shown in Figure 5.B. Incorporating unsupervised loss into the training
necessitated more epochs to reach a stable state compared to the first experiment. Notably, in this
setup, the classification loss steadily decreased, while the prediction loss initially increased before
decreasing. This pattern suggests that the model initially focuses on accurately predicting the labels
for the target images before leveraging the prediction error to stabilize, ultimately enabling it to predict
both the next image and the correct target label simultaneously.
.

Figure 5. Training Loss Function and Accuracy. A) Experiment 1. B) Experiment 2.

For both experiments, we calculated the specificity index using test images with a different
spatial frequency, as depicted in Figure 6. In line with findings from human experiments, the specificity
index increased with task precision, indicating lower generalizability at smaller separation angles for
both experiments. However, the decline in specificity index exhibited different patterns between the
two experiments: the first experiment displayed a sharp decrease when moving from a separation
angle of 1.0 to 2.0, whereas the second experiment showed a more uniform decreasing pattern.
Overall, the second experiment demonstrated a higher specificity index, suggesting that the inclusion
of prediction loss did not enhance the model's ability to generalize effectively in this task.
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Figure 6. Specificity Index (SI). A) Experiment 1. B) Experiment 2.

Additionally, we explored the model's reaction time. This was assessed by taking the average
inverse of the slopes between the output of the last reference image and the first target image, serving
as an indicator of reaction time. Our observations revealed that the model's reaction time decreased
with training, enabling it to reach the decision threshold more quickly (fig. 7). This observation is
consistent with findings from other studies, which have frequently linked a reduction in reaction time to
the learning process, highlighting a noticeable decrease as training progresses.

Figure 7. Reaction Times. A) Experiment 1. B) Experiment 2.

Finally, for both experiments, we assessed the extent of learning across different layers by
applying Equation 7 to various epochs. It was noted that most of the training occurred within the
weights of the dense layer, which is responsible for selecting features to be input into the RNN, as well
as within the weights of the RNN itself. Conversely, the weights of the convolutional layers exhibited
minimal changes over the course of training, as illustrated in Figure 8. This observation is in line with
the reweighting theory, which suggests that during VPL tasks, the representation itself does not alter.
Instead, what changes is how information from this representation is read, specifically enhancing the
emphasis on task-relevant information while diminishing the focus on task-irrelevant information to
improve performance.
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Figure 8.Learning in Different Layers. A) Experiment 1. B) Experiment 2.

5. Discussion

In this study, we implemented several modifications to the model initially proposed by
Wenliang and Seitz [25] to develop a more precise representation of Visual Perceptual Learning
(VPL). By integrating skip connections, we aimed to enhance the model's biological plausibility.
Additionally, the incorporation of a Recurrent Neural Network (RNN) component introduced dynamics
to the model, enabling the measurement of reaction time. Furthermore, we explored the impact of
incorporating an unsupervised loss function into the fundamentally supervised model, acknowledging
that VPL can occur even without external feedback.

The adapted models successfully learned the task, distinguishing between various separation
angles throughout the training process. These models demonstrated behaviors akin to those observed
in humans and primates during VPL tasks, including similar specificity patterns. Specificity is a crucial
aspect of VPL in laboratory experiments and is considered a defining characteristic of VPL behavior.
The models also accounted for the reduction in reaction time with continued training. Moreover, the
addition of skip connections to AlexNet suggested that this model is more closely aligned with the
information reweighting theory, the prevailing explanation for performance enhancements in VPL.

Utilizing deep neural networks (DNNs) to model Visual Perceptual Learning (VPL) provides
key benefits for both theoretical knowledge and practical applications. On a theoretical level, it
advances our understanding of how VPL functions in the brain by examining different DNN
architectures and learning techniques, thereby offering insights into the cognitive processes underlying
perceptual learning. This knowledge can improve the design of AI and machine learning models,
enhancing their ability to perform perception-related tasks in a manner akin to human learning.

Secondly, this approach has the potential to drive significant advancements in Artificial
Intelligence (AI) and machine learning. By modeling VPL using various DNN architectures, we can
improve AI systems' capabilities in perception-related tasks, allowing them to process and learn from
sensory information in ways that more closely resemble human learning. Additionally, a better model
of VPL can have practical applications in vision rehabilitation, offering new strategies for treating visual
impairments and optimizing therapies for those recovering from visual system injuries or diseases.
Furthermore, investigating the transferability aspect of perceptual learning could revolutionize AI
models by enhancing their ability to apply learned knowledge to new, unencountered tasks, thereby
boosting computational efficiency and model generalization.

While the DNN model shows a remarkable similarity to neuronal and behavioral data, it's
important to acknowledge that several decisions made regarding the training paradigm, noise
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injection, learning rule, and learning rate could have significantly influenced the results. Initially, the
network training utilized fixed orientation angle separations, which deviates from the standard method
commonly employed in numerous VPL studies. Furthermore, the learning rule Stochastic Gradient
Descent (SGD) does not align well with more biologically plausible Hebbian-like learning methods
[22,23], although more biologically plausible versions have been proposed 40.

In conclusion, while the DNN seems to be promising to provide a theoretical explanation for
many aspects of VPL, further investigation of different network architectures and learning rules is
required. Moreover, to thoroughly understand the limitations of the DNN in shedding light on this
phenomenon, it is crucial to compare the model's performance with empirical data from human and
animal studies.
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